CONTENTS

CHAPTER 22 THERMO-CHEMICAL DIFFUSION PROCESSES 579

22.1 INTRODUCTION 579
22.2 DIFFUSION PROCESSES 579
 22.2.1 LATTICE DIFFUSION 580
 22.2.2 THE RATE OF DIFFUSION AND DIFFUSION DEPTH 581
 22.2.3 DIFFUSION REMEDY 583
22.3 CARBURIZING (DIFFUSION OF CARBON) 584
 22.3.1 VACUUM CARBURIZING 591
22.4 CARBONITRIDING 591
22.5 NITRIDING 595
 22.5.1 PLASMA NITRIDING 598
 22.5.2 EXPANDED LATTICE S-PHASE 598
 22.5.3 NITROCARBURIZING 600
22.6 BORONIZING (BORIDING) 602
 22.6.1 BORONIZING PROCESSES 603
 22.6.2 INFLUENCE OF THE SUBSTRATE MATERIAL 604
 22.6.3 PROCESS PARAMETERS 605
 22.6.4 PROPERTIES OF BORONIZED COMPONENTS 606
22.7 CHROMIZING 607
22.8 SHERARDIZING 608
22.9 DIFFUSION ANNEALING 609
22.10 THE TOYOTA DIFFUSION PROCESS 612
22.11 INDUCTION HARDENING 614
22.12 RECOMMENDED ADDITIONAL READING 617
22.13 RELEVANT STANDARDS 617

CHAPTER 23 HOT DIP GALVANIZING 621

23.1 INTRODUCTION 621
23.2 REGULAR HOT DIP GALVANIZING 622
 23.2.1 DRY GALVANIZING 622
 23.2.2 WET GALVANIZING 624
23.3 GALVANIZING OF SHEETS 625
23.4 REACTIONS BETWEEN IRON AND ZINC 626
23.5 SIGNIFICANT PROCESS PARAMETERS 627
CHAPTER 24 VITREOUS ENAMEL 643

24.1 INTRODUCTION 643
24.2 PROPERTIES AND STRUCTURE 644
24.3 MANUFACTURING OF ENAMELLED PRODUCTS 649
24.3.1 APPLICATION OF ENAMEL 650
24.4 QUALITY SPECIFICATIONS AND TEST METHODS 651
24.5 RECOMMENDED ADDITIONAL READING 651
24.6 RELEVANT STANDARDS 651

CHAPTER 25 THERMAL SPRAYING AND HARDFACING 655

25.1 INTRODUCTION 655
25.2 DIFFERENT TYPES OF THERMAL SPRAYING 657
25.2.1 FLAME SPRAYING 658
25.2.2 ARC SPRAYING 659
25.2.3 DETONATION SPRAYING 660
25.2.4 HIGH VELOCITY OXYGEN FUEL SPRAYING 661
25.2.5 PLASMA SPRAYING 662
25.2.6 COLD SPRAYING 665
25.2.7 COMPARISON OF THERMAL SPRAYING PROCESSES 667
25.2.8 APPLICATION OF THERMAL SPRAYING 672
25.3 LASER FUSING 674
25.4 HARDFACING 676
25.5 REFERENCES 686
25.6 RECOMMENDED ADDITIONAL READING 686
25.7 RELEVANT STANDARDS 687
CHAPTER 26 MECHANICAL PLATING

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1 INTRODUCTION</td>
<td>689</td>
</tr>
<tr>
<td>26.2 THE PLATING PROCESS</td>
<td>690</td>
</tr>
<tr>
<td>26.2.1 MECHANICAL PLATING OF STEEL</td>
<td>691</td>
</tr>
<tr>
<td>26.3 REFERENCES</td>
<td>695</td>
</tr>
<tr>
<td>26.4 RECOMMENDED ADDITIONAL READING</td>
<td>695</td>
</tr>
<tr>
<td>26.5 RELEVANT STANDARDS</td>
<td>695</td>
</tr>
</tbody>
</table>

CHAPTER 27 INTRODUCTION TO PAINT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 INTRODUCTION</td>
<td>697</td>
</tr>
<tr>
<td>27.1.1 KEY FACTORS FOR THE SUCCESSFUL USE OF PAINT</td>
<td>700</td>
</tr>
<tr>
<td>27.2 THE COMPONENTS OF PAINT</td>
<td>701</td>
</tr>
<tr>
<td>27.2.1 BINDERS</td>
<td>701</td>
</tr>
<tr>
<td>27.2.2 SOLVENTS</td>
<td>702</td>
</tr>
<tr>
<td>27.2.3 PIGMENTS</td>
<td>704</td>
</tr>
<tr>
<td>27.2.4 ADDITIVES</td>
<td>742</td>
</tr>
<tr>
<td>27.2.5 RHEOLOGY</td>
<td>743</td>
</tr>
<tr>
<td>27.3 PRODUCTION OF PAINT</td>
<td>744</td>
</tr>
<tr>
<td>27.4 REFERENCES</td>
<td>748</td>
</tr>
<tr>
<td>27.5 RECOMMENDED ADDITIONAL READING</td>
<td>749</td>
</tr>
<tr>
<td>27.6 RELEVANT STANDARDS</td>
<td>749</td>
</tr>
</tbody>
</table>

CHAPTER 28 CLASSIFICATION OF PAINTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1 INTRODUCTION</td>
<td>751</td>
</tr>
<tr>
<td>28.2 PHYSICALLY DRYING PAINTS</td>
<td>753</td>
</tr>
<tr>
<td>28.2.1 GENERIC PROPERTIES OF PHYSICALLY DRYING PAINTS</td>
<td>753</td>
</tr>
<tr>
<td>28.2.2 TAR AND BITUMEN</td>
<td>754</td>
</tr>
<tr>
<td>28.2.3 CHLORINATED RUBBER</td>
<td>756</td>
</tr>
<tr>
<td>28.2.4 ACRYLIC</td>
<td>758</td>
</tr>
<tr>
<td>28.2.5 VINYL</td>
<td>759</td>
</tr>
<tr>
<td>28.2.6 NITROCELLULOSE</td>
<td>761</td>
</tr>
<tr>
<td>28.3 WATER-BORNE PAINTS</td>
<td>763</td>
</tr>
<tr>
<td>28.3.1 GENERIC PROPERTIES OF WATER-BORNE PAINTS</td>
<td>763</td>
</tr>
<tr>
<td>28.4 CHEMICALLY CURING PAINTS</td>
<td>766</td>
</tr>
<tr>
<td>28.4.1 GENERIC PROPERTIES OF CHEMICALLY CURING PAINTS</td>
<td>766</td>
</tr>
<tr>
<td>28.4.2 OXIDATIVELY CURING PAINTS</td>
<td>767</td>
</tr>
<tr>
<td>28.4.3 TWO-COMPONENT CURING PAINTS</td>
<td>772</td>
</tr>
<tr>
<td>28.4.4 HUMIDITY CURING PAINTS</td>
<td>779</td>
</tr>
<tr>
<td>28.4.5 HEAT CURING PAINTS</td>
<td>783</td>
</tr>
</tbody>
</table>
Table of Contents

30.3 WET BLASTING METHODS 846
30.3.1 WATER CLEANING METHODS (WATER JETTING) 847
30.4 ABRASIVE MEDIA 850
30.5 STANDARDS 854
30.6 EVALUATION OF SURFACE ROUGHNESS 859
30.7 PREPARATION OF METAL SURFACES BEYOND STEEL 860
30.7.1 ALUMINUM 860
30.7.2 HOT DIP GALVANIZED STEEL 861
30.7.3 STAINLESS STEEL 861
30.8 PAINT ADHESION 862
30.8.1 SURFACE TENSION AND WETTING 862
30.8.2 ADHESION THEORIES 865
30.9 REFERENCES 867
30.10 RECOMMENDED ADDITIONAL READING 867
30.11 RELEVANT STANDARDS 868

CHAPTER 31 SELECTION OF PAINT SYSTEMS 871
31.1 INTRODUCTION 871
31.2 CORROSION CLASSES 873
31.3 PAINT SYSTEMS FOR CORROSION PROTECTION 875
31.3.1 CONVERSION COATINGS AS PRETREATMENT 880
31.4 TEST OF ORGANIC COATINGS 886
31.5 PAINT DEFECTS 887
31.6 RELEVANT STANDARDS 888

CHAPTER 32 MEASUREMENT OF »TOTAL VISUAL APPEARANCE« 893
32.1 INTRODUCTION 893
32.2 GLOSS 896
32.2.1 HAZE 901
32.3 COLOR 902
32.3.1 COLOR FORMATION 903
32.3.2 MIXING OF COLORS 905
32.4 REFERENCES 912
32.5 RECOMMENDED ADDITIONAL READING 912
32.6 RELEVANT STANDARDS 912
Chapter 33 QC; Thickness and Adhesion of Coatings

33.1 Introduction

33.2 Measuring the Thickness of Coatings
- 33.2.1 Weight Gain Upon Coating
- 33.2.2 Mechanical Measurement
- 33.2.3 Chemical Measurement
- 33.2.4 Optical Measurement
- 33.2.5 Electrochemical Measurement
- 33.2.6 Magnetic Measurement
- 33.2.7 Magnetic-Inductive Measurement
- 33.2.8 Eddy-Current Measurement
- 33.2.9 X-Ray Fluorescence Measurement
- 33.2.10 Beta Backscatter Measurement
- 33.2.11 Ultrasonic Measurement
- 33.2.12 Ellipsometry
- 33.2.13 Measurement Before Curing

33.3 Quantifying Coating Adhesion
- 33.3.1 Bending Test
- 33.3.2 Polishing Test
- 33.3.3 Chisel Test
- 33.3.4 Pull Test
- 33.3.5 File Test
- 33.3.6 Grind/Saw Test
- 33.3.7 Cooling Test
- 33.3.8 Impact/Stroke Test
- 33.3.9 Peel Test
- 33.3.10 Push Test
- 33.3.11 Scribe/Grid Test
- 33.3.12 Scratch Tester
- 33.3.13 Daimler-Benz Test

33.4 Relevant Standards

Chapter 34 Measuring Hardness

34.1 Introduction

34.2 Hardness Measurement
- 34.2.1 Models for Correlating Indenter Area and Surface Hardness

34.3 Nanoindentation
36.11 X-RAY CHARACTERIZATION TECHNIQUES
 36.11.1 X-RAY DIFFRACTION 1061
 36.11.2 X-RAY FLUORESCENCE 1068
36.12 SURFACE AND SUB-SURFACE ANALYSIS BASED ON
 HIGH ENERGY ION BEAM TECHNIQUES 1070
 36.12.1 RUTHERFORD BACKSCATTERING SPECTROSCOPY 1074
 36.12.2 PARTICLE INDUCED X-RAY EMISSION 1078
 36.12.3 ELASTIC RECOIL DETECTION ANALYSIS 1083
 36.12.4NUCLEAR REACTION ANALYSIS 1084
36.13 SCANNING PROBE MICROSCOPY 1085
 36.13.1 SCANNING TUNNELING MICROSCOPY 1086
 36.13.2 ATOMIC FORCE MICROSCOPY 1093
36.14 SPECTROSCOPY 1099
 36.14.1 ULTRAVIOLET-VISIBLE (UV-VIS) SPECTROSCOPY 1104
 36.14.2 INFRARED SPECTROSCOPY (NEAR-IR, MID-IR AND FAR-IR) 1113
 36.14.3 RAMAN 1127
 36.14.4 ELLIPSMETRY 1132

APPENDIX A THERMODYNAMIC CONSIDERATIONS 1139
 A.1 INTRODUCTION 1139
 A.2 ENTHALPY 1139
 A.3 ENTROPY 1141
 A.4 GIBB’S FREE ENERGY 1144
 A.5 REFERENCES 1145

APPENDIX B REFERENCE DATA 1147
 B.1 FUNDAMENTAL CONSTANTS 1147
 B.2 ELECTROCHEMICAL EQUIVALENTS 1148

APPENDIX C POURBAIX DIAGRAMS 1155
 C.1 DIAGRAMS 1164
 C.2 REFERENCES 1187

INDEX 1189

THE AUTHORS 1205